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A new measurement technique for obtaining time- and spatially-resolved image 
sequences in hypersonic flows is developed. Nitric-oxide planar laser-induced fluorescence 
(NO PLIF) has previously been used to investigate transition from laminar to turbulent flow 
in hypersonic boundary layers using both planar and volumetric imaging capabilities.  Low 
flow rates of NO were typically seeded into the flow, minimally perturbing the flow.  The 
volumetric imaging was performed at a measurement rate of 10 Hz using a thick planar 
laser sheet that excited NO fluorescence. The fluorescence was captured by a pair of cameras 
having slightly different views of the flow. Subsequent stereoscopic reconstruction of these 
images allowed the three-dimensional flow structures to be viewed.  In the current paper, 
this approach has been extended to 50,000 times higher repetition rates.  A laser operating at 
500 kHz excites the seeded NO molecules, and a camera, synchronized with the laser and 
fitted with a beam-splitting assembly, acquires two separate images of the flow.  The 
resulting stereoscopic images provide three-dimensional flow visualizations at 500 kHz for 
the first time.  The 200 ns exposure time in each frame is fast enough to freeze the flow while 
the 500 kHz repetition rate is fast enough to time-resolve changes in the flow being studied.  
This method is applied to visualize the evolving hypersonic flow structures that propagate 
downstream of a discrete protuberance attached to a flat plate. The technique was 
demonstrated in the NASA Langley Research Center’s 31-Inch Mach 10 Air Tunnel facility. 
Different tunnel Reynolds number conditions, NO flow rates and two different cylindrical 
protuberance heights were investigated. The location of the onset of flow unsteadiness, an 
indicator of transition, was observed to move downstream during the tunnel runs, coinciding 
with an increase in the model temperature. 
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I. Introduction 
Understanding and predicting transition from laminar to turbulent flow in hypersonic boundary layers is an 

active and important field of research because transitional and turbulent heating can be four or more times higher 
than laminar heating on hypersonic vehicles1,2 including the proposed Orion Crew Exploration Vehicle (CEV).3  In 
hypersonic ground-test facilities, these transitional boundary layer flows are characterized by high speeds (1-3 km/s) 
and small (cm to mm) spatial scales that are accompanied by steep gradients in the flow properties.  These factors 
drive the spatial resolution and frequency-response requirements of the instrumentation used to visualize and 
quantify these types of flows.  For example, a flow structure with a 1-mm length scale travelling at a speed of 1 km/s 
can only be resolved using instrumentation with sub-mm spatial resolution and greater than 1 MHz frequency 
response.  In ground test facilities, such structures can transit through a few-mm thick boundary layer having steep 
velocity gradients.  Thus, the instrumentation used should have a high spatial resolution in all three spatial 
dimensions.  Ideally, spatially-resolved volumetric data would be obtained at a fast sampling rate, with each 
individual measurement being temporally resolved (not averaged in time, relative to the time-scales in the flow).  
Similar challenges exist in other research fields such as explosions and detonations.  

Several different measurement approaches have been developed to temporally resolve and acquire volumetric 
flow visualization or quantitative 3D data in both subsonic and supersonic flows.  Approaches using scanning laser 
sheets,4-16 tomography,17-19 holography20 and stereoscopic photography21-23  have been demonstrated with some 
success but the spatial resolution typically gets worse as the sampling time is shortened.  Reference 24 provides a 
detailed discussion of the relative merits and limitations of many of these volumetric imaging approaches.  
Reference 24 also introduces the stereoscopic nitric-oxide planar laser induced fluorescence (NO PLIF) technique, 
which provides high resolution volumetric flow visualizations with flow freezing (sub-microsecond) time 
integration.   

With a few notable exceptions, most of these prior instruments acquired volumetric data at rates too slow to time 
resolve the flowfields being studied.  References 5, 7, and 11 developed a three-dimensional imaging system that 
could obtain time-sequence data at a repetition rates of 20-50 Hz, which was fast enough to time resolve the low 
velocity (<3 m/s) water and air flows investigated.  More recently, Schroeder et al.19 developed a tomographic PIV 
system that could frame at 5 kHz while acquiring quantitative velocity measurements in a large flow volume. Such a 
system would be suitable for time-resolving flows with velocities of about a hundred meters per second, depending 
on the image resolution and size of the structures being investigated.  However, such a system is still two orders of 
magnitude too slow to time-resolve the evolution of hypersonic boundary layer flows of interest here. 

  In the current paper, a MHz-rate NO PLIF system,25,26 is combined with the stereoscopic PLIF24 technique to 
obtain time-sequence, volumetric flow visualizations for the first time.  The system provides measurements with 
sub-mm spatial resolution, 200-ns time resolution in each image, and acquires data at a rate of 500 kHz.  The 
volumetric information is provided by stereoscopic reconstruction of a pair of NO PLIF images acquired using a 5-
mm thick laser sheet.  The system is shown to be able to spatially and temporally resolve a transitional hypersonic 
boundary layer flow.   

II. Experiment and Analysis Description 
 The experiments were performed in the 31-Inch Mach 10 Air Tunnel at NASA Langley Research Center.  The 

test apparatus consisted of three main components: the test article, the wind tunnel facility, and the MHz 
Stereoscopic PLIF system. The analysis used different image processing techniques to produce stereoscopic red/ 
blue anaglyphs from the raw images.  These apparatuses and procedures are summarized briefly in this section. 

A. Test Article  
The test article was a 20° full-angle wedge with a sharp leading edge.  The wedge model is designed to hold 

different shape and size protuberances, also known as trips. Figure 1 shows computer renderings of the trip and the 
model.  The top surface of the wedge is a planar surface, herein referred to as a flat plate.  The flat plate is 127.0-
mm (5-in.) wide and 162.5-mm (6.4-in.) long.   
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each image is constant in the streamwise direction of the image.  Thus, the main streamwise variations in the 
fluorescence intensity are attributed entirely to the laser energy.   To correct for these energy variations, each 
(spanwise) row in the original image was binned into a single pixel, resulting in one column that corresponded to the 
averaged PLIF intensity at each streamwise location in the image. The original image pairs were then divided by this 
spatial energy distribution, resulting in smoother images that showed reduced laser-sheet intensity artifacts. A 
threshold was then applied to the images to reduce spurious noise.  Finally, the stereoscopic image pairs were 
cropped where very low laser intensities occurred.  The final step in processing the images prior to generating the 
red/blue anaglyphs was to increase the resolution of the images: the image pairs were scaled by a factor of two, 
interpolating to obtain the values of the new pixels, resulting in a pair of 160x320 images corresponding to each 
laser pulse.   

E. Anaglyph Image and Movie Sequence Processing  
 The image pairs were then imported into the MATLAB®-based subroutine anaglyph() (version 2.0).31  This 
subroutine combines the two grayscale images, obtained with different views, into a single image in which one view 
is colored red and the other view is colored blue, generating a so-called anaglyph.  The subroutine was run in a loop 
to process multiple images to create movies or montages, as shown below. While several different methods24 can be 
used to display stereoscopic image data, red/blue anaglyphs were chosen for this paper since they were the most 
accessible format to view the stereoscopic image sequences and movies and do not require specialized computer 
equipment. These images must be viewed through glasses having a red filter on the left eye and a blue filter on the 
right eye to produce the stereoscopic effect. The three-dimensional reconstructions occur in the viewer’s brain as the 
right and left eyes see the two views from the stereoscopic anaglyph.  

III. Results 
 This paper displays stereoscopic data of runs with different Reynolds numbers, trip heights, and a varying 
amount of nitric oxide being seeded into the flow. Each run typically consisted of more than 20 image sequences 
totaling 400 images which maintained constant laser sheet positioning and/or model angle of attack. A few 
illustrative examples are selected from the runs to depict the features of the MHz stereoscopic NO PLIF 
visualization method.  

A. Stereoscopic Flow Visualizations: Montage views 
Figure 4 shows a montage of 8 time-correlated anaglyphs that were acquired with two-microsecond time spacing 
between images. The flow is from top to bottom in the images and the protuberance is near the top of each image.  
The laser sheet enters from the right side of the image, as evidenced by the shadow to the left of the protuberance in 
each image.  The signal to noise ratio is the best in the middle and bottom of the images and is worse near the top of 
the images, where the laser intensity was lower.  The individual flow structures can be seen and tracked as they 
progress and evolve downstream of the protuberance. The flow remains laminar, as evidenced by smooth, straight, 
streamwise streaks, for the first 12±2 mm downstream the cylindrical trip and then begins to develop into two 
helical, or corkscrew-shaped, structures that suggest vortical motion. Upon careful inspection, the two vortices, 
developing on the opposite sides of the trip appear to have opposite rotation and are often in phase with one another, 
as seen in Fig. 4(e).  The vortex on the right side appears to rotate clockwise (as viewed from downstream) as it 
propagates downstream while the left-side vortex rotates in the opposite direction.  These corkscrew-shaped vortices 
begin to break down into more irregular structures, suggestive of turbulence, as they propagate downstream.  
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IV. Discussion  
   

 The stereoscopic MHz NO PLIF system demonstrates the ability to freeze the motion and visualize 3-
dimensional flow structures of hypersonic flows in a manner previously demonstrated with a 10-Hz NO PLIF 
system.24  However, use of the MHz system allows repeated observations with microsecond-scale time increments 
that allow changes in the flow structures and propagating flow field to be monitored.  

Compared to stereoscopic images acquired with the 10 Hz NO PLIF system,24  the current images have a weaker 
stereoscopic effect.  There are several possible reasons for this.  First, the 10 Hz system used a pair of cameras, each 
having 512x512 pixels whereas the CCD’s used in the current experiment had 80x160 pixels, roughly 5x lower 
resolution in each dimension.  The more spatial information present in the images, the easier for the brain to 
interpret the images and assimilate them.  Second, the 15 degree angular separation between the two views in the 
current experiment is slightly larger than the 12 degree separation used in the 10-Hz experiment. These large angular 
separations were used to enhance the three-dimensionality of the thin boundary layer structures, but, generally 
speaking, the wider the angular separation of the camera views, the more difficult it is for the brain to reconstruct the 
views since they look less natural. Third, and most important, the signal-to-noise ratio was worse in the current data 
set than in the prior 10-Hz experiment.   

Low signal-to-noise ratio in PLIF experiments often occurs because of one or more of the following reasons: (i) 
too low laser intensity (ii) too few camera counts, (iii) too high camera gain used, (iv) too small-aperture (high f-
number) collection optics or (v) not enough seed species (nitric oxide in the current experiment). None of these were 
the cause of the low signal-to-noise ratio in the current experiment.  High signal-to-noise ratio images with 6,000-
8,000 counts (out of 16,000) could be obtained on one of the camera’s CCD sensors with intensifier gains set to 50-
80% of the maximum with the level of laser intensity available and amount of NO seeding used.  Intensifier gains up 
to 80% did not result in excessively noisy images.  The other, identical, CCD sensor showed an anomalous 
saturation behavior when the signal intensity exceeded approximately 1000 to 1500 counts above background. This 
CCD appeared to be damaged.  Consequently, lower intensifier gains (30-50%) were required to prevent saturating 
this sensor.  To make matters worse, images having signals below 300-500 counts above background appeared to be 
noisy owing to the camera’s thermal noise.  Thus, only signal intensities in the small range of about 1000 counts 
would produce images that were both above the background noise and below the saturation limit.  Unfortunately the 
pulse-to-pulse energy of the pulse burst laser varies by a factor of 2-3 burst to burst.  There can also be up to a factor 
of 2 variation in pulse energy within a burst.  At a repetition rate of 0.2 Hz, only 15 image sequences could be 
obtained per 90 sec. tunnel run.  Few of these image sequences resulted in images that were above the noise level of 
the CCD while being below the saturation level of the damaged CCD.  Even in the best image sequences, evidence 
of the saturation problem can be observed, for example in Fig. 5 in which the red images appear to be more washed 
out than the blue images, particularly in the lower half of the images.  If this high-speed imaging technique is 
applied using a camera system not having this saturation issue, many more, higher quality, stereoscopic 
visualizations could be obtained.  The system could also be significantly improved by using a higher-resolution 
camera.   

Some advantages of this volumetric imaging are that the resolution of the imaging system is determined by the 
camera used; in this case 160 x 160 pixels, and that the setup differs little from conventional thin-laser-sheet PLIF 
imaging in that only slight modification to the sheet forming optics and the camera system are needed. However 
compared to other three dimensional flow visualization systems, this technique does have a major disadvantage: it is 
difficult, though not impossible, to extract point-by-point three dimensional spatial information from the image 
pairs.21 In addition, the flow must also be seeded with a tracer gas or must have a fluorescent species present in the 
flow.   

The 500 kHz stereoscopic PLIF capability demonstrated herein could easily be extended to increase the speed by 
a factor of 2 (to 1 MHz) by simply triggering the laser and camera at 1 MHz as in past work.26  However, the 
performance of the laser is worse under these conditions: a factor of 2 fewer pulses are obtained from the laser, 
resulting in a factor of 4 reduction in the overall duration of observation (e.g., 6 sec vs. 24 sec).  The hypersonic 
flow structures studied thus far with this method do not appear to change appreciably on time scales of 1-2 sec, so 
use of the system at 500 kHz is advised.  The system can also be slowed down to operate at 100 kHz or even 10 kHz 
for lower-speed applications.  At the lower repetition rates, higher-resolution camera technology exists that could be 
employed to increase the spatial resolution.  Also, at the lower repetition rates the laser can produce many more 
pulses per burst (for example 100 pulses at 100 kHz), so longer movie sequences can be obtained; lower frequency 
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cameras can acquire longer movie sequences as well.  The technique could be applied to image other species besides 
nitric oxide.  For example, imaging the hydroxyl radical (OH) in the same fashion would provide useful three-
dimensional views of combustion radicals in high-speed combustion flows such as scramjet engines.   

V. Conclusion 
  A stereoscopic NO PLIF system operating at 500 kHz, visualized three-dimensional flow structures in a 
transitional hypersonic boundary layer. The technique temporally resolved unsteady flow structures as they 
propagated downstream of cylindrical protuberances. This new visualization technique may help improve 
understanding of hypersonic flows and could be useful in other applications where visualization of unsteady, high-
speed flows is needed, such as detonations, supersonic combustion systems and explosions.  
 This method has sub-mm spatial resolution and sub-microsecond time resolution capable of visualizing 
hypersonic flows with flow-freezing time response. The 2 μsec interframe time allows the flows to propagate a few 
pixels between images, allowing the development and evolution of the flow structures to be observed.  The three-
dimensional information provided by the technique offers a more complete visualization of the flow compared to the 
thin laser sheet NO PLIF method or the 10 Hz stereoscopic NO PLIF method. However, in their current form, the 
stereoscopic data are less spatially precise than a thin-sheet scanning approach. Compared to conventional thin-
laser-sheet imaging methods where all three spatial coordinates are known for each image, the stereoscopic images 
are somewhat harder to interpret. Furthermore, the image quality is significantly worse than the 10 Hz stereoscopic 
method, owing to the lower pixels resolution and a saturation issue with the MHz-rate camera system. Nonetheless, 
the 500 kHz rate stereoscopic imaging system presented here demonstrates a 50,000 times increase in repetition 
compared to prior 3D visualization systems, which allows time-sequence images of the flow to be obtained. 
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